Direct saliva transcriptome analysis.
نویسندگان
چکیده
BACKGROUND Current standard operating procedures for salivary transcriptomic analysis require low temperatures and lengthy mRNA isolation, which substantially hamper its use in the clinic. We developed a streamlined, ambient-temperature processing, stabilization, and storage protocol for clinical analysis of salivary RNA. METHODS The direct saliva transcriptome analysis (DSTA) used cell-free saliva supernatant instead of isolated mRNA for saliva transcriptomic detection, and all procedures, including processing, stabilization, and storage of saliva samples, were performed at ambient temperature without a stabilizing reagent. We evaluated this streamlined protocol by comparing the mRNA expression levels of 3 saliva internal reference genes [glyceraldehyde-3-phosphate dehydrogenase (GAPDH); actin, beta (ACTB); and ribosomal protein S9 (RPS9)] to levels measured with standard procedures, and detecting the variation of their expression levels under long-term ambient temperature storage. The clinical utility of DSTA was assessed by use of 7 oral cancer salivary mRNA biomarkers in a clinical study. RESULTS Each saliva internal reference gene mRNA showed similar expression levels when assayed by the DSTA or standard procedures, and remained stable under ambient temperature storage for at least 10 weeks without significant degradation (P = 0.918, 0.288, and 0.242 for GAPDH, ACTB, and RPS9, respectively). Compared with standard procedures, the performance characteristics of oral cancer salivary transcriptomic markers were retained as assayed by DSTA after 10 weeks of storage at ambient temperature. These results indicate that the DSTA is a suitable alternative method for saliva transcriptomic analysis and is feasible for use in clinical cancer research applications. CONCLUSIONS The streamlined DSTA protocol can impact the saliva-handling method and improve the standard operating procedures for clinical saliva transcriptomic diagnostics.
منابع مشابه
Salivary transcriptome diagnostics for oral cancer detection.
PURPOSE Oral fluid (saliva) meets the demand for noninvasive, accessible, and highly efficient diagnostic medium. Recent discovery that a large panel of human RNA can be reliably detected in saliva gives rise to a novel clinical approach, salivary transcriptome diagnostics. The purpose of this study is to evaluate the diagnostic value of this new approach by using oral squamous cell carcinoma (...
متن کاملSelection of Suitable Reference Genes for Analysis of Salivary Transcriptome in Non-Syndromic Autistic Male Children
Childhood autism is a severe form of complex genetically heterogeneous and behaviorally defined set of neurodevelopmental diseases, collectively termed as autism spectrum disorders (ASD). Reverse transcriptase quantitative real-time PCR (RT-qPCR) is a highly sensitive technique for transcriptome analysis, and it has been frequently used in ASD gene expression studies. However, normalization to ...
متن کاملRNAprotect saliva: An optimal room- temperature stabilization reagent for the salivary transcriptome.
To the Editor: Quantitative analysis can now be performed on a panel of human salivary mRNAs identified as potential markers for oral cancer (1, 2). Translational and clinical applications of salivary transcriptome diagnostics require RNA degradation in saliva to be stopped at the time of collection and until analysis, preferably with room-temperature–compliant stabilization reagents. We compar...
متن کاملHuman saliva as route of inter-human infection for mouse mammary tumor virus
Etiology of human breast cancer is unknown, whereas the Mouse Mammary Tumor Virus (MMTV) is recognized as the etiologic agent of mouse mammary carcinoma. Moreover, this experimental model contributed substantially to our understanding of many biological aspects of the human disease. Several data strongly suggest a causative role of MMTV in humans, such as the presence of viral sequences in a hi...
متن کاملThe human salivary RNA transcriptome revealed by massively parallel sequencing.
BACKGROUND Evaluation of the salivary transcriptome is an emerging diagnostic technology with discriminatory power for disease detection. This study explored massively parallel sequencing for providing nucleotide-level sequence information for each RNA in saliva. METHODS Transcriptome profiling with the SOLiD™ system was applied to RNA isolated from unstimulated cell-free saliva (CFS) and who...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical chemistry
دوره 57 9 شماره
صفحات -
تاریخ انتشار 2011